
of oval tube profile; x, r, ~, coordinates; 6, drag coefficient; qv, density of volumetric 
heat release; T, temperature; p, density; Cp, specific heat capacity; p, pressure; R, gas 
constant; c, root-mean-square deviation; F, Fisher criterion; R2,multiple correlation coeffi- 
cient; Re, Reynolds number; m, porosity of the bundle relative to the heat-transfer agent; 
G, mass flow rate of the heat-transfer agent; qs, heat flow density. Subscripts: st, stabi- 
lized; i, initial; h, housing; in, inlet. 
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RADIANT-CONVECTIVE HEAT EXCHANGE IN TURBULENT MOTION 

OF A GAS SUSPENSION WITHIN A TUBE 

F. F. Tsvetkov and V. I. Salokhin UDC 536.242.001.5 

A calculation of the temperature field and radiant and convective components 
of the thermal flux density is performed for combined action of convection 
and radiation in a dusty gaseous medium. 

At present there are available a large number of studies of the process of radiant- 
convective heat exchange [1-4]. However, for the case of flow of a gas suspension in a 
round tube this problem has been considered only in [5, 6]. Many questions such as the 
effect on heat exchange of the direction of the thermal flux, the parameters of the carrier 
gas and particles, and temperature conditions require further study. 

In the general case radiant-convective heat exchange is described by a system of equa- 
tions in which the energy equation is an integral-differential one. Numerical solution of 
the problem is possible only with significant expenditures of machine time, so that develop- 
ment of simple but reliable methods for engineering calculations of the radiant component 
of the thermal flux density on the tube surface during motion of a dusty gas therein is a 
problem of practical value. 

The present study will present a simplified method and results of calculating radiant- 
convective heat exchange for flow of a gas suspension in a circular tube. 

Relying on [7], we will assume that the solid particles found in the gas suspension 
flow are uniformly distributed over the tube section. The gas suspension is considered as 
a quasihomogeneous absorbing and radiating grey medium. Temperature difference between gas 
and particles will be neglected, as well as the effect of these temperatures on convective 
heat exchange. The latter assumption is satisfied well for tubes of small diameter if the 
particle mass flow concentration does not exceed the value two [8]. We will consider the 
flow of the gas suspension in a region far removed from the tube entrance. The tube wall 
is absolutely black. On the wall the boundary condition is qw = const. Following [7], 
we write the energy equation for the gas suspension in the form 

Oh, 1 0 (rq) + %es. (1) 
p , w ~  a----~- - T or 
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From Eq. (i) we can obtain the following equations for calculating the temperature 
field and the total thermal flux density: 

T = 2qcr~ (" 2qc ~/R, 

n ;% Pr~ 

(2)  

q + q r  2 I~ 9,wx RdR. (3) 

qc R ~ 9,w~ 

We will assume that energy transport by radiation in the axial direction is negligibly 
small. Then the functions Nres(r) and qr(r) can be calculated with the aid of equations 
valid for an isothermal infinitely long cylinder filled with the given absorbing and radi- 
ating medium [9]: 

~K' r~ 

~]res (r) = 4a2aT~ ro f 1 (arog) Io (~r~ dy  + 4~8a f K (~r, arl) r~T ~ (ra) dr1 - -  4aaT ~ (r), (4)  
Y b 

where 

l 
eo 

t' K0 (czrV) I0 (r dt], if r 1 < r, 
1 

K(czr, czr l ) - -  oo 
Ko (~r~v) Io (o~rv) @, if r~ > r, ( 5 ) 

o~ 

q, (r) = 4aro~T4: j" KI (aro9) I1 (ary) dy - -  
92 1 

, oo ~~ ~ Ko (arly) 11 (ary) - -  4c~c~ S r lT '  @1) dr1 j' K1 (~zry) Io Qzrly) dy + 4cz2a j' T ~ (K1) r l d K  1 dy. J 
0 1 Y r 1 Y 

With t h e  a i d  o f  Eqs.  ( 2 ) - ( 5 )  c a l c u l a t i o n s  o f  T ( r ) ,  q ( r ) ,  and q r ( r )  were  p e r f o r m e d  f o r  
a flow in a tube 20 ~m in diameter of a gas mixture (nitrogen, argon, or helium) with 50-~m- 
diameter carbon particles. The particle mass flow concentration varied from 0 to 2. The 
maximum wall temperature upon heating of the gas suspension was 2000 K, and the minimum wall 
temperature with cooling was 300 K. The gas pressure was l0 s Pa, with thermal flux density 
at the wall of 1.5"I0S-5.10 s W/m 2. In the majority of calculations the Reynolds number was 
equal to 52,000. 

In the temperature field calculations the dependence of the gas physical properties on 
temperature was considered. For constant properties the turbulent viscosity was calculated 
with the Reichardt expression, while the effect of temperature inhomogeneity on the ratio 
eo/v was considered as in [I0]. It was assumed that the solid particles had no effect on 
the turbulence. The turbulent Prandtl number was taken constant and equal to 0.9. 

Scattering of radiation by the solid particles was considered approximately by the meth- 
od proposed in [ii]. At diffraction parameter values corresponding to the calculation condi- 
tions anisotropic scattering occurs, with "forward" scattering dominating. The fraction of 
radiation diffracted was equal to 0.75. In this case, as in [ii], the effect of scattering 
on the heat exchange process is less significant than with isotropic scattering, and can be 
considered approximately by multiplying the absorption coefficient by some other coefficient 
less than unity, which depends on the effective Schuster number. The dimensionless true ab- 
sorption coefficient was taken equal to 0.6, and the correction coefficient to 0.75. 

The temperature field was calculated by the iteration method. In the initial approxi- 
mation it was assumed that ~res = 0 with the physical properties of the gas being constant. 
In each subsequent approximation radiant heat exchange and the temperature dependence of the 
gas physical properties were considered. Preliminary calculations revealed that much time 
was required to calculate temperatures with consideration of qres. Therefore, a quite coarse 
division of the tube over radius was selected, at the nodes of which the qres values were 
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Fig. i. Temperature distribution over 
tube radius for cooling (curves 1-4) and 
heating (curves 5-8) of the gas suspen- 
sion for Re = 52,000 and qw = 1.5"105 W/ 
m2: i, 8) K = 0; 2, 7) 0.2; 3, 6) i; 4, 
5) 2. 

calculated directly with Eq. (4). The results obtained were transformed to a finer grid by 
the spline-interpolation method. Direct calculation of qres at 50 nodes with subsequent 
interpolation to a 200-point grid allowed reduction in calculation time compared to direct 
calculation of qres with Eq. (4) at 200 points by an order of magnitude. 

The calculations showed that radiant heat exchange in the gas suspension flow leads 
to temperature equalization over tube section for both heating and cooling (Fig. i). Analy- 
sis revealed that for a given qw value with increase in concentration the fraction of ther- 
mal flux transferred by radiation increases. The convective component of the thermal flux 
proves to be 3-5% higher than that calculated by the Newton-Richman law. In other words, 
deformation of the temperature field due to radiant heat exchange has a weak effect on the 
value of the convective heat liberation coefficient given the condition that Re = idem, T w = 
idem, Tidem. 

In all cases the distribution of the total thermal flux density over radius was close 
to linear, i.e., remained the same as for a pure gas. 

Figure 2 shows the distribution of the radiant thermal flux component over tube radius, 
as obtained by calculating qr by two methods: with and without consideration of radiant- 
convective interaction. In the first case the quantity qr was calculated with the tempera- 
ture field obtained with Eq. (2) with consideration of qres, while in the second case the 
condition qres = 0 is used. As is evident from Fig. 2, calculation of radiant fluxes without 
consideration of radiant-convective interaction produces elevated results. While for heating 
the difference is relatively small, for cooling it reaches 100%. The results obtained can be 
explained by comparing Fig. 2 with Fig. i. Calculation by the first method was performed 
for curves with K > 0 (Fig. i) and by the second, for K = 0. The largest contribution to 
the resultant radiant flux is produced by those layers which have the highest temperature. 
While for heating with change in K the temperature of these layers changes little (T " Tw), 
for cooling the change is significant (the temperature of these layers is close to that of 
the flow core). 

The fraction of the thermal flux transferred by radiation for a fixed number Re depends 
significantly on the physical properties of the gas, for example, K = 2, T w = 1300 K, and 
Re = 52,000 for argon qrw/qw = 0.47 (for T = 928 K), for nitrogen, 0.25 (for T = 873 K), for 
helium, 0.016 (for T = 1070 K). The effect of the gas physical properties manifests itself 
in the convective heat liberation coefficient (which is smallest for argon) and the density, 
upon which the absorption coefficient depends. Since argon has the highest density, for 
a given value of K for the argon-carbon particle suspension the volume concentration of par- 
ticles is highest, and thus, the absorption coefficient is highest. 

The effect of the Buger number on the radiant thermal flux component at the wall is 
shown in Fig. 3. It is evident that with increase in the number Bu qrw/(oT, 4) increases, 
although with approach to the value Bu = i the rate of increase in radiant thermal flux de- 
creases. Energy transport by radiation begins to appear most markedly at optical thickness 
(Buger number) values close to 1...2, while for Bu >> i (optically thick layer) qrw/(oT, 4) + 
0 [12]. 

The qrw values obtained in the calculations were compared with the expression 

~ (T~- ~), (6) q r w =  Og 

where e = i - exp(--~Kef), and s = 0.gd. 
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Fig. 2. Resultant radiant flux density distribution over 
tube radius for heating (a) and cooling (b) for Re = 52,000 
and qw = 1.5.10 S W/m 2 (solid lines, with; dashed lines, with- 
out consideration of radiant-convective interaction): i, 2) 
K = 0.2; 3, 4) I; 5, 6) 2. 

Fig. 3. Dimensionless resultant flux density on wall vs 
Buger number: i) cooling, Tw/T = 0.4 (T, = T); 2) heating, 
Tw/T = 1.5 (T, = Tw). 

Fig. 4. Comparison of calculation results with Eq. (7): i) 
nitrogen, heating; 2) nitrogen, cooling; 3) argon, heating; 
4) helium, heating; 5) helium, cooling, qrw, qrw ~ kW/m2" 

Results of this comparison are shown in Fig. 4, whence it follows that the data pro- 
duced by the exact calculations are described satisfactorily by the expression 

qrw = 0"91 qr~r (7) 

Thus, the results of the numerical study of radiant-convective heat exchange performed 
above show that for engineering calculations of thermal fluxes on the wall of a tube within 
which a dusty gas flows it is acceptable to use the "one-dimensional" approximation, accord- 
ing to which the radiant component of the thermal flux density is calculated with Eq. (7) 
and the convective component is found by the expression 

qcw= %(T~-- ~), (S) 

while the convective heat liberation coefficient a c is found by expressions valid for purely 
convective heat exchange. It was assumed in the present study that the solid particles have 
no effect on the value of ~c" For approximate evaluation of ~c with consideration of the 
effect of the solid particles the expressions presented in [8] can be recommended. The ef- 
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fect of the temperature factor must then be considered just as in a pure gas. It can be 
proposed that for the case of a nonblack wall at emissivities of E w = 0.8-0.9, a correc- 
tion factor equal to 0.5(e w + i) should be introduced on the right side of Eq. (6). 

NOTATION 

p,, h,, mixture density and enthalpy; r, r0, radial coordinate and tube radius; R = 
r/r 0, dimensionless radius; qres, resultant radiation flux volume density; qr, resultant 
radiation flux density; =, absorption coefficient; T, mean mass temperature of mixture; T, = 
T, if T w < T; T, = T w, if T w > T; K, particle mass flow concentration; 10(x) , K0(x) , K1(x), 
11(x) , modified Bessel functions; e, particle cloud emission coefficient; s effective 
beam length; o, Stefan-Boltzmann constant; Bu = ~r0, Buger number. Subscript w, wall. 
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UTILIZATION OF THE K-E TURBULENCE MODEL IN A FREE-CONVECTIVE 

TURBULENT BOUNDARY LAYER 

A. V. Fedotov and Yu. S. Chumakov UDC 532.517.4;536.25 

A free-convective turbulent boundary layer on a vertical isothermal surface 
is examined. The influence of the buoyancy force on the kinetic energy of the 
turbulent fluctuations is analyzed. A modification is proposed for the turbu- 
lence model that takes account of the free-convective flow singularities. 

Modeling turbulence when studying free-convective boundary layers is based mainly on 
the analogy with forced flows[l, 2] without taking account of the influence of the lift 
force on the turbulent characteristics. Experimental papers [3-6] that have recently ap- 
peared and in which the structure of a turbulent free-convective flow is investigated in 
detail permitted substantial refinement of the turbulence model and taking account of the 
singularities of similar flows. 

As the initial equations to describe the free-convective flow around an isothermal ver- 
tical surface, the turbulent boundary-layer equations in a Boussinesq approximation were 
used. Details of the problem formulation can be found in [7]. 
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